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ABSTRACT
Spoken Conversational Search (SCS) poses unique challenges in
understanding user-system interactions due to the absence of visual
cues, and the complexity of less structured dialogue. Tackling the
impacts of cognitive bias in today’s information-rich online envi-
ronment, especially when SCS becomes more prevalent, this paper
integrates insights from information science, psychology, cognitive
science, and wearable sensor technology to explore potential op-
portunities and challenges in studying cognitive biases in SCS. It
then outlines a framework for experimental designs with various
experiment setups to multimodal instruments. It also analyzes data
from an existing dataset as a preliminary example to demonstrate
the potential of this framework and discuss its implications for
future research. In the end, it discusses the challenges and ethical
considerations associated with implementing this approach. This
work aims to provoke new directions and discussion in the com-
munity and enhance understanding of cognitive biases in Spoken
Conversational Search.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in ubiqui-
tous and mobile computing; • Information systems → Users
and interactive retrieval.
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1 INTRODUCTION
The rapid advancement of generative AI has been swiftly integrated
into our everyday systems and acted as our personal assistants. For
example, Bing Chat on search engines. This advancement marks
a transition from traditional query-list-examine to conversational
question-answering in information searches. Although such in-
teraction is primarily text-based with limited access, the trend is
evolving towards multimodal capabilities in personal devices, exem-
plified by the partnership between GPT-4o and Apple.1 This offers
broader accessibility through voice-based interaction, paving the
way for Spoken Conversational Search (SCS). While this advance-
ment can benefit various groups with limited access (e.g., visually
impaired) [33] and those in situations where reading isn’t feasible
(e.g., driving or exercising) [80], delivering user-friendly yet rele-
vant responses remains a challenge, especially due to limitations in
cognition (in processing, analyzing, and interpreting information)
and that of the voice channel itself [77, 115, 122]. Search engines act
as intermediaries of knowledge making it crucial for such systems
to curate relevant yet diverse content to foster balanced viewpoints
(avoid “echo chambers” [8]) and overcome cognitive limitations
and biases.2

However, screen-based web search benefits from well-defined
tools and standard protocols to visualize and study bias behaviors,
such as eye-tracking [17, 22, 42, 129] and click-through logs [26,

1OpenAI and Apple announce partnership to integrate ChatGPT into Apple expe-
riences. Retrieved 10 June, 2024 from https://openai.com/index/openai-and-apple-
announce-partnership/
2For instance, researchers have already raised concerns about biases in personalized
informatics [124], or Conversational Search [100].
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59, 106]. Such methodologies are not established for SCS, which
calls for instruments, methodology, and protocols that go beyond
the visual paradigm [35]. Regarding this, our contributions in this
position paper are three-fold: (i) discuss the applicability of behav-
ior analysis tools used for web search to SCS and identify research
opportunities for exploring cognitive biases in SCS, (ii) propose
approaches to design experiments, from setup formats to measure-
ments, with preliminary results demonstrating the potential of
using multimodal physiological signals as a voice channel equiv-
alent to eye-tracking in web search, (iii) outline challenges with
suggestions and ethical considerations for adopting our approach
to achieve accurate and representative results from multimodal
signals.

2 BACKGROUND
2.1 Spoken Conversational Search
Conversational information seeking (CIS), the process of obtaining
information through conversations (text, audio/voice, or multi-
modal), is a fast-developing research area [91, 128]. CIS supports
users to search for information through natural language. It en-
ables users to ask questions, refine their questions, ask follow-up
questions, or provide relevant feedback in a natural manner. The in-
teraction of such systems could either be single-turn or multi-turn.
In contrast to a single-turn, a multi-turn setting typically main-
tains the conversational context (e.g., co-reference resolution)3 in
a back-and-forth information exchange with the user [128]. Some
advantages of multi-turn CIS include alleviating the cognitive bur-
den on the user by breaking down the information, assisting with
information need formulation, or providing highly personalized
information for a given context [113]. While context management
may be relatively trivial for a CIS system, users also have to perform
context management subconsciously. This would require significant
cognitive effort from the user, particularly when the conversation
gets longer, and the task gets more complex. This paper focuses on
SCS, a type of CIS, where communication between the user and sys-
tem is entirely mediated verbally through audio [109]. Visual CIS
interfaces often use screen-based cues like boldfacing important
sections of text [20], or attributing sources within the responses
of text-based CIS [61], large language model (LLM) based conver-
sational agents [11, 62, 99]. These cues aid users in effortlessly
finding information. However, in linear channels like SCS, users
may struggle to keep up with presented information, due to limited
cognitive capacity and audio features (e.g., prosody) that can affect
their understanding [20].

2.2 Cognitive Biases in Information Seeking
Cognitive biases “are systematic errors in judgment and naturally
occurring tendencies that skew information processes, due to limi-
tations in cognitive, motivational, or environmental factors, which
lead to sub-optimal or fundamentally wrong outcomes” [121]. It
is based on the cognitive load theory [107] that humans have lim-
ited cognitive capacity, so they tend to favor mental shortcuts of
other judgments (e.g., system ranking, or crowd opinions) [8, 104].
Information seekers often rely on perceived trustworthiness when
3By “context”, we mean the information exchanged during the conversation necessary
to interpret the users’ response, e.g., the history, preferences, and so on.

accessing information, constructing mental models to link vari-
ous pieces of information [59]. This process may influenced by
cognitive biases [8]. In particular, the information cherry-picking
will likely be affected by the order (rank) (Order Effect), imbal-
anced viewpoints (Exposure Effect), a prior judgment (Confirmation
Bias), the first piece of information (Anchoring Bias) or Misinforma-
tion [18, 59, 82, 104]. This can lead to uncritical support for partisans,
reinforce stereotypes, and spread misinformation [8, 21, 59]. Con-
versely, it can also help users effectively navigate overwhelming
information. Therefore, the impacts of these biases must be studied
to provide accurate in situ information in SCS. Common methods
for measuring cognitive bias in web search include web-logging
metrics like sentiment analysis, dwell time, clicks [26, 30, 59, 106],
and eye-tracking [17, 22, 42, 129].

However, there is a lack of research on biases in voice-based
systems. Eye-tracking is unavailable on these systems, and web
logging has limitations in providing granular data [21, 106]. Addi-
tionally, recent work found inconsistent results using NASA-TLX
for mental load [37], suggesting traditional self-reports may be
unreliable. These emphasize the need for fine-grained data, such as
physiological data from wearable technology.

2.3 Neural Activities for Cognitive Bias
The human brain is divided into several regions in charge of differ-
ent functionalities. For example, the frontal lobe handles decision-
making, motivation, and focus, while the temporal lobe is responsi-
ble for auditory and language processing [66]. Investigating how
neural activities traveled across regions provides a window look
into the flow and processing of information within the brain [64, 71].
For example, researchers have measured the workload change in
web browsing [47] and understood search intentions [75, 76] or
keyword relevance [123]. Listening effort refers to the cognitive
resources people spend on listening [34, 89]. The audio information
is first stored as a “buffer” in working memory, then processed
for comprehension, and then potentially stored in long-term mem-
ory [89, 93]. During this process, information that is discrepant
with the current mental model or perceived as irrelevant will not
be [93], or requires more effort [94] to interpret further. Compared
to visually impaired individuals, sighted users generally have a di-
minished ability to understand and interpret audio information [16]
as evidenced by increased cognitive effort in audio-only scenar-
ios [97]. This heightened effort may hinder their capacity for reason-
ing and critical thinking, that is essential for mitigating cognitive
bias [8]. By understanding such cognitive activities involved, we
can understand if users encounter bias - e.g., if information only
reaches language regions or proceeds to memory retrieval.For in-
stance, users expend more cognitive effort and attention when
assessing information aligned with their beliefs [74]. Additionally,
initial judgments during utterances can shape final decisions on
a voice’s believability [46].These results suggest a hypothesized
process where language regions activate first, followed by compre-
hension and working memory assessment. If the information is
deemed irrelevant or dissident, it will be discarded without further
processing across brain regions, leading to biased decisions [71].
Advances in wearable devices have enabled physiological sensing to
detect cognitive bias in web searches, relying on grounded theories
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(e.g.,cognitive load theory [107], orienting responses [103], cog-
nitive dissonance [28, 90], and dual-thinking system theory [24]).
Multi-modal data are discussed later in Section 5.1.

3 RESEARCH OPPORTUNITIES
Exploring cognitive biases in SCS offers research avenues, such
as characterizing search stages, understanding user behavior, and
developing bias detection or mitigation approaches.

How to Characterize Cognitive Bias at the Different Stages
of the SCS Process? Cognitive bias may occur at each stage of a
visual-based search process [8], i.e., querying, consuming the search
results, and judging relevance and satisfaction. Previous work sug-
gests variations in search stages or actions [67] (e.g., query formula-
tion/reformulation, results scanning, selection, and assessment) and
user behaviors between screen and audio-only channels [113]. Simi-
larly, cognitive biases manifest differently in these search stages for
screen and audio-only channels [50]. For instance, users can review
and refer back to their query more easily on screens than with voice
queries [96]. In SCS, queries are often in natural language [23, 40],
and the arrangement of words may reveal user intent [102] and
perhaps even reveal any underlying biases. For instance, a user’s
choice of query formulation between, “Why is renewable energy
inefficient?” and “What are the efficiencies of renewable energy?”
may indicate preconceived beliefs, potentially leading to biased
search results. Furthermore, detecting cognitive biases in the query
stage can be complicated by users’ false memories(misremembered
attributes of searched items), as they may not easily accept mis-
remembering [52]. To this end, we highlight the significance of
investigating cognitive processes at various stages of SCS interac-
tion (e.g., detecting false memories at the query stage).

What Is the Role of Clarifying Questions in SCS? How Is
It Related to Cognitive Bias? In CIS, the dialogic nature makes
query reformulation and clarifying questions more critical and
frequent, supporting conversational actions [3, 112, 128]. Users of-
ten iteratively refine queries by referring to previous responses to
narrow down or expand their initial query [128]. Cognitive biases
may influence this iterative process. For example, if the informa-
tion aligns with users’ beliefs they may accept it without further
questioning. Conversely, if it opposes their beliefs, they may refor-
mulate the query to find results that align with their expectations.
This means that considering a user’s reformulation/clarifying ques-
tions can help to detect potential bias. Consequently, presenting
strategies for clarifying options becomes as important as providing
relevant responses in SCS. Different presentation strategies may
affect user satisfaction and their arrangement and format may re-
inforce certain types of biases (e.g., confirmation bias). this is a
research challenge that has not been explored in SCS.

Can Voice Modulation Be Used to Characterize Cognitive
Bias?While eye-tracking is not feasible in voice interactions, au-
dio attributes (e.g., pitch and speed) from both the system and
user reveal information about motivations, emotions, and personal
traits [58]. For instance, Jiang et al. [46] indicated that perceived
information believability is affected by the confidence in the voice
of the system. Additionally, a recent work, found higher trust in
female-voice agents that higher pitch reduces participants’ decision-
making reliance on the provided information [38]. These examples

illustrate how voice modulation in systems affects information
perception. Currently, we lack understanding of how system voice
modulationsmight influence user beliefs or reinforce biases like con-
firmation bias, presenting an open research challenge. One potential
solution is to slow down the system when discussing controversial
opinions, allowing users ample time to absorb and consider. Besides,
an important direction is the relationship between biases and user
voice modulation. For instance, a skeptical tone and higher pitch
when querying, “Is climate change REALLY [accentuate] happen-
ing?” may indicate confirmation bias towards the belief that climate
change is not a real issue.

How to Leverage Content Manipulation to Mitigate Harms
of Cognitive Bias? Cognitive bias does not always have a neg-
ative effect [69]. While it can skew perceptions and decisions, it
also helps balance perspectives [53]. For instance, Availability Bias
refers to placing greater importance on readily available or eas-
ily recalled information. A way to counteract it is by presenting
less readily available information first. However, this solution may
raise concerns about group fairness and misinformation spread.
Recognizing and understanding the impact of cognitive bias helps
address potential pitfalls and leverage its potential to create ef-
fective and user-friendly search experiences. Furthermore, audio
interventions in voice-based conversations (e.g., nudging for clarify-
ing questions [37], or warning users of presence of misinformation
in a voice-based setting [19]) offer a potential solution to inform
users of potential biases in SCS.

4 CASE STUDY: ARGUMENT SEARCH
Expanding on our identified research opportunities, we introduce
a SCS specific use case called Spoken Conversational Argumenta-
tive Search (SCAS) and discuss its implications, data, topics, and
methodology for experimentation (see Section 5). SCAS systems
respond to a user’s spoken query on controversial topics with mul-
tiple argument stances or viewpoints (i.e., PRO and CON). Users can
rely on SCAS to provide them with balanced arguments on topics
of interest. Let us consider an example in which, a user asks “is uni-
versal basic income good for society?”. If the system only provides
one side (i.e., PRO) of the issue, the user tends to be blind-sided by
not having any information about other perspectives [36]. Such a
biased exposure of perspectives is an important open challenge [85]
if left unaddressed, may negatively impact society [12, 26, 114, 126].
Biases can arise from data itself as much as they can from algo-
rithms [86] and presentation strategy in voice-only settings. Hence,
choosing appropriate data is crucial when studying cognitive biases
in SCS to control for unknown effects (from the data).

Data. For our specific case study, designing experiments re-
quires argumentative topics (e.g., “should zoos exist?”) and docu-
ments/passages supporting (PRO) and opposing (CON) the topics.
A crowdsourced study by Draws et al. [26] collected opinions from
100 participants on 18 topics from the ProCon.org debate portal4;
only a few topics identified with mild pre-existing viewpoints. In-
corporating these topics into future experiments on cognitive bias
is crucial to avoid heavily polarized subjects and better detect the
effects of cognitive bias. The current dataset, with only 280 search
results, may be insufficient for longer conversations. Therefore,

4https://www.procon.org/debate-topics/ [Accessed: 9 Feb 2024]

https://www.procon.org/debate-topics/
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we propose expanding the collection with the args.me corpus [2],
which not only includes arguments with stances (PRO or CON) but
also offers additional granularity by providing sub-topical perspec-
tives (e.g., Capitalism, Healthcare, and Poverty) for each document.
This increased granularity will also aid in mitigating unknown
effects in future experiments.

5 METHODOLOGY
This section outlines an experimental framework for studying cogni-
tive biases in SCS, covering potential experimental setups and data
collection, including behavioral and physiological data. Addition-
ally, we showcase preliminary results from an information-seeking
experiment as an example of this approach and the potential of
physiological data. The less structured nature of conversational
interactions and the lack of clear indicators of comprehension or
focus, i.e., listening effort (see Section 2.3), make it challenging to
identify and measure specific biases in SCS. This section outlines
an experimental framework for studying cognitive biases in SCS,
including possible setups and measurements. Table 2 categorizes
applicable measurements into Behavioral and Physiological Re-
sponses. It also showcases preliminary results as an example of this
approach and the potential of physiological data. To accommodate
the various needs of research questions and their associated experi-
ments, including feasibility, scalability, researchmethod (qualitative,
quantitative, mixed), Table 1 covers potential experiment set-ups,
including their advantages and disadvantages.

5.1 Measurements
Behavioral Responses. In SCS, natural language utterances func-
tion as queries [96] and the Voice modulation (see Section 3) of
these raised queries distinguishes it from traditional screen-based
search. In a case of rectifying system errors5, users typically adjust
volume, rephrase commands, or change pronunciation [120]. When
the system’s response contradicts their beliefs, users, especially
those less tech-savvy, might confuse cognitive biases with system
errors. They may then try familiar methods used for system errors
to get preferred outcomes, potentially introducing bias. Speaking
of querying, users’ listening habits can also be used to investigate
biases in SCS. Listening effort or speech intelligibility is assessed
by the recalled accuracy, as indicators of attention and language-
related cognitive processing [93], in recall/recognition tasks like
word/sentence recognition and sentence comprehension [16]. This
may also reveal biases, as users often comprehend biased informa-
tion more easily due to lower cognitive load [10], but it still lacks
granularity. It is worth noting that confounding variables like lan-
guage proficiency [51] and working memory capacity [32, 89] can
also impact listening performance [16] potentially introducing bi-
ases in information comprehension. A potential solution to address
these pitfalls is adapting Brief-IAT [105] – a version of the Implicit
Association Test (IAT) [39] designed to assess bias [25] . However,
implementing a reliable bias assessment in the SCS remains an open
challenge and requires more attention from the community.

5A system error occurs when the system fails to provide users with the desired results,
regardless of whether it is caused by an incorrect response or lack of a response.

Physiological Responses. Cognitive bias can be measured by
examining differences in cognitive processes, emotions, and engage-
ment. For instance, a user may be more engaged and emotionally
aroused at the end of an audio segment. Multi-modal sensing with
wearables can capture these responses, offering a scalable and com-
prehensive way to ‘visualize’ cognitive bias in SCS, analogous to us-
ing eye-tracking for screen-based IR systems. Electroencephalog-
raphy (EEG) gathers brain electrical activity, aiding in studying
cognitive and emotional processes such as memory, attention, and
responses to stimuli [15, 55, 64]. EEG has shown promising results in
web search, detecting relevance judgment at both article level [4, 41]
and word level [123], and identifying information needs in Q&A
scenarios [70]. Two common ways EEG signals are analysed [73]
are Event-Related Potentials (ERP) and Frequency Band Analysis.
ERP is a time-locked analysis describing cognitive activity after an
event’s onset [64]. Typically analyzing signals within a short time
window (e.g., 1 second) [31, 70, 123], which may potentially help
with detecting biases in each turn of a conversation in SCS. On
the other hand, Frequency Band Analysis is typically used with
longer stimuli durations (e.g., 1 minute) and can potentially help
explore biases at the whole session level, rather than just per turn
of the conversation. The latter explores various wave frequencies
linked to cognitive states (e.g., alpha for attention [71, 74], theta
for memory [72], beta for active thinking engagement [125]) [55].
The works above focus on brain waves in the frontal cortex related
to human attention, memory, decoding, and retrieval. While they
were explored in a screen-based IR context, we emphasize their
potential in SCS as well, to explore cognitive biases. With current
wearable EEG devices (e.g., headbands [78] and earbuds [29]) being
integrated ubiquitously into earphones [1, 7], we foresee opportu-
nities to expand research on biases in SCS through crowdsourced
studies, thus lowering barriers for many researchers. Additionally,
peripheral signals from commercial wearables, such as Electro-
dermal Activity (EDA), Photoplethysmography (PPG), and Skin
Temperature (SKT), can complement EEG [6, 15]. EDA measures
the variations in skin’s electrical conductance driven by sweat gland
activity. PPG uses light to measure blood volume changes and to
derive heart rate, blood oxygen levels, and other related metrics.
SKT reflects the balance between the body’s heat production and
heat loss. These data indicate emotional responses from different
aspects. For example, high arousal triggered by stressful events,
often increase perspiration (sweating), leading to elevated EDA
levels [9, 15, 54], or a rapid increase in heart rate (manifests as
shorter intervals between PPG peaks [15, 54, 88]). Besides, EDA de-
creases when individuals are highly engaged (and thus less aroused)
[54] and SKT generally decreases in low valence [54]. Furthermore,
pupillary responses have been used to investigate selective atten-
tion [93], auditory distraction [65], and listening efforts [89]. For
voice interaction, wearable eye-tracking glasses, e.g., Pupil Labs
Neon glasses [56], can provide such a channel. However, pupil data
is most suitable for lab studies with consistent lighting.



Towards Detecting and Mitigating
Cognitive Bias in Spoken Conversational Search MOBILEHCI Adjunct ’24, September 30–October 03, 2024, Melbourne, VIC, Australia

Table 1: A breakdown of different experiment set-ups (i.e., Lab, Field, and Crowdsourced) in 𝑆𝐶𝑆 . LLM: large language model

Features Lab Study Field Study Crowdsourced Study

Control High Low; unobserved factors in real-world Moderate; depends on the design of platform or task

Data Quality High and detailed; due to highly
controlled and optimal environ-
ment

Low; real-world noise and factors may affect data Moderate; less controlled than lab studies.

Scalability Low; requires physical atten-
dance on both participants and
researchers

Moderate; enables more participants than lab stud-
ies but still limited

High; enables larger participant pool from diverse loca-
tions. LLM applications like Retrieval Augmented Generation
(RAG) [61] show potential for controlled studies [83, 87]

Ecological
Validity

Low; the artificial setting may
influence behavior

High; since participants are in natural environ-
ments

Moderate; the absence of a physical entity (e.g., smart speaker)
may influence user information perception [57]

Setup Wizard of Oz (WOZ) [27, 111,
116]

Participants are provided with pre-configured
voice agents and wearable devices to take
home [120]. Comfortable and portable devices may
facilitate longitudinal studies.

Crowdsourcing platforms like Prolific enable simulating always-
on voice assistants for hypothetical scenarios. Consumer prod-
ucts like Apple AirPods with EEG [7] will make crowdsourced
studies more feasible.

Related
Works

[13, 45, 79, 109, 111, 113] [118–120] [43, 108]

Table 2: A Breakdown of studied measures by data type (Behavioral vs. Physiological) and user interaction mode (screen-based
vs. voice). Bold text highlights studies on cognitive biases, emphasizing the limited research on cognitive biases in voice search
(i.e., SCS).

Data Type Screen-based Voice

Construct Related Work Construct Related Work

B
eh

av
io
ra
l

Web-logging (e.g., dwell time, clicks) Cognitive Bias [26, 59, 106] –

Transcripts & Voice Modulation (e.g., pitch, speed) – Perceived Trust [38, 63]

Task Performance (e.g., sentiments of
query/utterance, recall rate)

Cognitive Bias [30] Listening Effort [16, 49, 51, 89, 97]
Search Experience [68, 98] Search Experience [49, 98]

Motion, Facial Expression, Gaze – Engagement [81, 84, 84]

Ph
ys
io
lo
gi
ca
l Brain Signals (e.g., EEG)

Cognitive Workload [47, 72] Perceived Trust [46]
Search Experience [4, 41, 70, 75, 123]
Cognitive Bias [10, 71, 74, 125]

Peripheral Sensing (e.g., EDA, PPG) Cognitive Bias [14, 71, 90] –

Pupillary Responses Selective Attention [41, 93]
Selective Attention [93]
Distraction [65]
Listening Effort [89]
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0.05
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Mean EDA Changes

Figure 1: Preliminary EEG (left) and EDA (right) results (𝑁 = 7) of grand average on listening to search results (about 1 minute)
on self-rated 𝑒𝑎𝑠𝑦 (Antarctica exploration – R03.353) and ℎ𝑎𝑟𝑑 topics (Freighter ship registration – T04.743). In the left figure,
deeper colors indicate greater neural activity. Cool colors (negative voltage) represent inhibitory, i.e., suppressing or restricting
neural responses, while warm colors (positive) represent excitatory, i.e., promoting or enhancing responses [64]. The dots
represent the placement of 14 electrodes.
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5.2 Preliminary Results
We used the EEG and EDA data collected by Ji et al. [44] for illustra-
tion purposes.6 They collected various physiological signals from
wearable devices in a lab study with simulated information search
settings. Each participant completed a search task and rated the
perceived difficulty in understanding the provided information on
12 topics. We analyzed data from 7 participants who received search
results in audio formats on both most 𝑒𝑎𝑠𝑦 (𝜇 1.3/5.0) and ℎ𝑎𝑟𝑑 (𝜇
3.0/5.0) topics (according to self-ratings). Although bias was not
the target manipulation, the difficulty reveals changes in cognitive
efforts required to receive the information. Figure 1 demonstrates
clear differences between the 𝑒𝑎𝑠𝑦 and ℎ𝑎𝑟𝑑 topics in both results.
Overall, there was less neural activation on 𝑒𝑎𝑠𝑦. Increased positive
voltages around 1.75s in most regions suggest focused attention and
engagement. Meanwhile, the left temporal negative may indicate
reallocating cognitive resources from auditory processing to other
areas needing more processing power. On ℎ𝑎𝑟𝑑 , heightened acti-
vation was observed early at 0.75s. Pronounced prefrontal/frontal
peaks suggest deeper processing and working memory load related
to understanding the information. Enhanced activation at temporal
regions, which handles the auditory and language processing, indi-
cates increased comprehension effort and knowledge recall. EDA
exhibits more consistency on 𝑒𝑎𝑠𝑦, while much greater variability
and fluctuation on ℎ𝑎𝑟𝑑 . This suggests increased arousal or stress
when absorbing difficult information in the audio. In summary,
these preliminary results suggest that observing users’ auditory in-
formation consumption is viable and warrants further exploration.
Multi-modal signals may offer insights into fast and slow thinking
systems [24, 48], and combining behavioral data with wearable
signals could accurately identify user behavior, preferences and
biases in SCS.

6 LESSONS LEARNED & ETHICAL
CONSIDERATIONS

SCS interactions are less structured than screen-based interac-
tions, which complicates analysis. Physiological data show distinct
changes in receiving audio search results but interpreting cognitive
biases is still complex. To ensure collect reliable data, these fac-
tors should be considered when designing the experiment: (i) data
with more channels (e.g., 14+ channel EEG) offers direct insights
but involves noise and requires specialized designs and expertise,
while with fewer channels (e.g., peripherals) is easier to analyze, (ii)
longer activities provide more reliable data, but SCS often involves
short tasks, (iii) confounding variables like fatigue, interest, health,
and specific activities (e.g., speech) may significantly impact. It is
important to ensure optimal contact between sensors with specific
body areas (e.g., see [9]). Furthermore, given biases are abstract con-
cepts, the related hypotheses should be deconstructed into specific
constructs, like engagement or cognitive load, and further into di-
rect indicators that are measurable, reliable, and objective [95, 117],
such as skin conductance or reaction time. During analysis, the
requirements of signal processing on frequency can make certain
features unavailable or distorted, especially those associated with
6EEG are cleaned following Eugster et al. [31], divided into 3sec segments. EDA are
cleaned, baseline-corrected following Bota et al. [15], aggregated with a 1sec window.

high frequency in PPG [88]. Besides, analyzing SCS transcripts re-
quires extensive effort and qualitative approaches as demonstrated
in earlier works (see [110, 113]). For ethical considerations, it
is crucial that informed consent and participant awareness of the
exposure levels as physiological data could compromise privacy by
revealing thoughts and emotions [127]. For example, the protocol
used by Arnau-González et al. [5] could be adopted in this case.
To protect cognitive liberty [92], caution is essential when devel-
oping strategies to mitigate biases using multi-modal signals for
real-time content manipulation. It is also crucial to account for in-
dividual variations (e.g., minority groups, neurological conditions)
for accurate and representative results [101].

Authors’ Positionality. This paper reflects the perspectives shaped
by the interdisciplinary backgrounds and views of our author team,
which includes computer science researchers in information re-
trieval, conversational search, human-computer interaction, and
pervasive computing. Some of the authors have significantly influ-
enced these perspectives from their work on exploring cognitive
bias in screen- or voice-based search, and personal experience as
members of the neurodiverse community. The authors acknowledge
the complexities surrounding cognitive biases. This paper aims to
support a comprehensive discussion on understanding and utilizing
biases in SCS. We acknowledge the gap in including perspectives
from minority groups, First Nations peoples [60, 126], or people
with disabilities.

7 CONCLUSIONS
Drawing insights from information-seeking, psychology, cognitive
science, and wearable sensors, this paper highlights the under-
explored area of cognitive biases in sophisticated voice-only sys-
tems like SCS, and advocates further research. We argue that tradi-
tional web search instruments are insufficient for studying cognitive
biases and envision further research opportunities. Furthermore,
we propose a general experimental approach for studying cogni-
tive biases in SCS and report preliminary results demonstrating
the feasibility and significance of using physiological responses.
Additionally, we discuss the challenges and ethical considerations
in adopting this approach.
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Ashley Cordes, Joel Davison, Kūpono Duncan, Sergio Garzon, D. Fox Harrell,
Peter-Lucas Jones, Kekuhi Kealiikanakaoleohaililani, Megan Kelleher, Suzanne
Kite, Olin Lagon, Jason Leigh, Maroussia Levesque, Keoni Mahelona, Caleb
Moses, Isaac (’Ika’aka) Nahuewai, Kari Noe, Danielle Olson, ’Ōiwi Parker Jones,
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