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Abstract
While recent advancements in large language
models (LLMs) have enhanced their capabili-
ties to solve mathematical problems, other as-
pects of numeracy remain underexplored. In
this paper, we propose a benchmark to evaluate
the ability of language models to perform basic
numeracy tasks. We frame numeracy as a Natu-
ral Language Inference (NLI) task to assess the
models’ ability to understand both numbers and
language contexts. We evaluate 49 language
models (LMs), including fine-tuned LMs on
NLI datasets, instruction-tuned LLMs, and spe-
cialized math-LLMs. Our findings reveal three
main insights: (1) LLMs only clearly outper-
form smaller LMs in arithmetic tasks, indicat-
ing that mathematical reasoning cannot be gen-
eralized to other numeracy skills such as num-
ber comparison and normalization; (2) while
most language models achieve fair to good ac-
curacy for NLI entailment cases, they still strug-
gle to predict contradiction and neutral cases;
and (3) the robustness of language models’
numeracy capabilities needs improvement, par-
ticularly in understanding the semantics and
pragmatics of numbers in linguistic contexts.

1 Introduction

Language models (LMs) have made significant
strides in the field of natural language process-
ing (NLP) and proven to be highly adaptable to
a diverse array of language-related tasks. Current
benchmarks for LMs on numerical reasoning pre-
dominantly focus on answering math questions de-
rived from test material, such as standardized as-
sessments (Hendrycks et al., 2021; Cobbe et al.,
2021; Liu et al., 2024; He et al., 2024). Recent
results show remarkable progress of very large lan-
guage models to decipher complex mathematics
problems, such as word problems with multiple
unknown variables and non-linear equations (Lu
et al., 2023; Ahn et al., 2024). While solving math-
ematical challenges gain increasing attention in

the research community, the application of numeri-
cal reasoning to real-world scenarios remains rel-
atively unexplored. In such contexts, LLMs must
not only be able to answer numerical questions but
also verify the correctness of natural language text
containing numerical information. It is important
to expand the evaluation paradigm to include more
application-oriented tasks where numerical reason-
ing plays a central role. For instance, fact-checking
involves verifying numerical claims from textual
data (Thorne and Vlachos, 2017; Venktesh et al.,
2024) or scientific hypothesis testing requires nu-
merical interpretation1 (Lehman et al., 2019). Suc-
cessful numerical reasoning in such tasks requires
not only mathematical problem solving, but also
a comprehension of numerical concepts (Wallace
et al., 2019; Thawani et al., 2021a).

We investigate the performance of language
models on foundational numeracy tasks. We test
not only arithmetic reasoning but also two other
essential numeracy skills, i.e., comparing numbers
and understanding a number when expressed in dif-
ferent syntactic formats (e.g., “three” vs “3”). Our
evaluation adapts natural language inference (NLI)
tasks to assess the numeracy capability of language
models. We analyze how well a model can use
numerical information in context to make infer-
ences or draw conclusions. Models are evaluated
on their ability to disambiguate and reason about
potentially conflicting information in text. NLI
tasks need to deal with ambiguity, which is com-
mon when working with numerical information.
Moreover, NLI tasks offer a broader evaluation of
a model’s overall language comprehension, includ-
ing how it handles numerical information within
a larger narrative. This is in line with our goal
to evaluate numerical reasoning as part of a more
comprehensive language understanding capability.

1e.g., verifying a finding “The new drug reduced symptoms
by 25% more than a placebo.” from a clinical trial result.



Premise Hypothesis Label

BASIC ARITHMETIC

Sam had 9 dimes in his bank and his dad gave him 7 dimes. Sam has 16 dimes now. E
Sam had 9 dimes in his bank and his dad gave him 7 dimes. Sam has 7 dimes now. C
Sam had 9 dimes in his bank and his dad gave him more dimes. Sam has 16 dimes now. N

NUMBER COMPARISON

Rasik walked 20 m towards north. Rasik walked less than 80 m towards north. E
Rasik walked not more than 20 m towards north. Rasik walked 40 m towards north. C
Rasik walked less than 80 m towards north. Rasik walked less than 20 m towards north. N

Willy has 1400 crayons. Lucy has 290 crayons. Willy has more crayons than Lucy. E
Willy has 1400 crayons. Lucy has 290 crayons. Lucy has more crayons than Willy. C

NUMBER NORMALIZATION

John has a total of 16 shirts. John has a total of sixteen shirts. E
John has a total of seventy six shirts. John has a total of 16 shirts. C

The test of this sea urchin is up to 40 mm in diameter. The test of this sea urchin is up to 4 cm in diameter. E
The total weight of the hoard is 285 kilograms. The total weight of the hoard is 285 grams. C

Table 1: Examples of premise and hypothesis pairs from dataset covering three basic numeracy tasks: Basic
Arithmetic, Number Comparison, and Number Normalization (E: Entailment, C: Contradiction, N: Neutral).

We introduce a benchmark consisting of over
28k sentence pairs to evaluate the numerical ca-
pabilities of language models. Our pipeline con-
structs diverse test sets, incorporating both exist-
ing and newly created data, by including new in-
stances adapted from math word problems. Ta-
ble 1 provides examples of this data. We conduct
large-scale experiments on different pre-trained and
large language models. Our findings reveal that
most models achieve an F1 score below 0.75 for
most Basic Arithmetic and Number Comparison
tasks. Math-LLMs outperform their corresponding
general-purpose models only on the Basic Arith-
metic task but not on the other two tasks. On the
other hand, smaller fine-tuned pre-trained language
models can achieve performance comparable to
large language models in both Number Compari-
son and Normalization tasks.

In summary, our main contributions are:

• We build a comprehensive benchmark that re-
fines existing datasets and incorporates newly
curated data for three numeracy tasks: Basic
Arithmetic, Number Comparison, and Num-
ber Normalization. This benchmark serves as
a valuable tool for evaluating the numerical ca-
pabilities of language models in conjunction
with their language comprehension abilities.

• We conduct a large-scale empirical study on
49 open-source language models spanning 17
distinct model families using the constructed
benchmark.

• Through in-depth analysis of the models’ per-
formance, we demonstrate that specialized
math-based pre-training objectives do not nec-
essarily endow models with numerical skills
beyond arithmetic calculations. Furthermore,
our investigation demonstrates that instruction
tuning can enhance the numerical capabilities
of language models.

The created dataset is released at https://
github.com/rmahendra/numeracyNLI.

2 Related Work

Numeracy refers to the ability to understand, in-
terpret, and use numbers (Spithourakis and Riedel,
2018; Thawani et al., 2021b). A related line of
work has investigated that word embedding does
not capture numeracy adequately (Naik et al., 2019;
Wallace et al., 2019). Spithourakis and Riedel
(2018) studied several strategies to better repre-
sent numerals in neural language models, whereas
Geva et al. (2020) demonstrated that numerical rea-
soning skill of language models can be improved
through enhanced pre-training.

Numerical reasoning ability is often investigated
in the form of question answering (Xu et al., 2022;
Hopkins et al., 2019), including reading compre-
hension (Dua et al., 2019) and math word prob-
lems (Hosseini et al., 2014; Roy and Roth, 2015;
Koncel-Kedziorski et al., 2016; Huang et al., 2016;
Amini et al., 2019; Miao et al., 2020; Patel et al.,
2021; Cobbe et al., 2021; Hendrycks et al., 2021).

https://github.com/rmahendra/numeracyNLI
https://github.com/rmahendra/numeracyNLI


Numerical comprehension in text is also explored
via different tasks, i.e., masked language model-
ing (Berg-Kirkpatrick and Spokoyny, 2020; Pal
and Baral, 2021; Park et al., 2022; Sakamoto and
Aizawa, 2023) and textual entailment (Roy et al.,
2015; Ravichander et al., 2019; Akhtar et al., 2023).

EQUATE (Ravichander et al., 2019) is an NLI
benchmark for quantitative reasoning, consisting
of five distinct test sets, three of which involve
binary classification. Although it cover various
quantitative phenomena, EQUATE does not sys-
tematically evaluate specific types of numeracy.
NumGLUE (Mishra et al., 2022) extends numer-
ical reasoning evaluation to a multi-task setting,
incorporating machine reading, math word prob-
lems, and NLI. While our benchmark also adopts
an NLI framework, it goes beyond NumGLUE’s
primary focus on arithmetic tasks by introducing
a broader range of numeracy challenges, such as
Number Comparison and Normalization.

More recently, FERMAT (Sivakumar and
Moosavi, 2023) provided a fine-grained analysis
of arithmetic skills by examining number repre-
sentation, mathematical operations, and training
dependencies. In contrast to FERMAT, which eval-
uates arithmetic reasoning through QA tasks, our
work leverages an NLI framework for a more struc-
tured assessment of logical reasoning over numer-
ical facts. Additionally, while FERMAT employs
template-based data augmentation to evaluate accu-
racy across different representations, our approach
extends this by incorporating formula-based aug-
mentations to analyze robustness across language
contexts and numerical magnitudes. Furthermore,
our benchmark offers a more comprehensive evalu-
ation of Number Normalization.

3 Basic Numeracy Framework

Evaluation of numeracy and language under-
standing in our framework is formulated as NLI
tasks (Bowman et al., 2015). Given a pair of sen-
tences, premise and hypothesis, the task solver is
asked to determine the semantic relation between
them; i.e., entailment, where the hypothesis is true
given the premise, contradiction, where it is false,
or neutral, where the truth of the hypothesis cannot
be determined. The data instance in this evalua-
tion benchmark follows the minimal pairs princi-
ple (Warstadt et al., 2020), in which each premise
sentence has minimally changed hypothesis sen-
tences with different label.

3.1 Tasks
Basic numeracy capabilities are examined through
three tasks, i.e., Basic Arithmetic, Number Compar-
ison, and Number Normalization (Table 1). These
three tasks are packaged as word problems that
require numeracy which is a combination of the
ability to work with numbers and understand lan-
guage context.

1. Arithmetic Word Problem. Basic Arith-
metic task refers to a mathematical operation that
involves fundamental calculations with numbers.
This task typically include basic arithmetic opera-
tions such as addition, subtraction, multiplication,
and division. We do not cover complex mathe-
matical concepts or advanced operations. Since our
objective is to test basic numeracy, we constrain the
arithmetic task as single-hop reasoning problem, in
which all numbers needed for the calculation are
provided literally in the context.

2. Number Comparison. Number comparison
task involves the process of comparing two or more
numerical values to determine their relative rela-
tionships. In such task, we evaluate whether one
number is greater than, less than, or equal to an-
other number (e.g., 10 > 5, 1 ≤ 2). We cover two
subtasks: number with quantifier and comparative
reasoning.

In the first subtask, a premise is a sentence con-
taining numerical information and a hypothesis is
a similar sentence to the premise, except for the
numerical value. The original number is substi-
tuted with different number and concatenated with
a quantifier. For several instances, we use the same
number in both premise and hypothesis and the
semantics is changed with a quantifier. In another
subtask, a premise sentence comprises two or more
numerical information. A hypothesis draws a hypo-
thetical conclusion that requires comparative rea-
soning between the numbers in the premise.

3. Number Normalization. A Number Normal-
ization task is concerned with the process of con-
verting numerical values into a standardized or nor-
malized format. Two types of normalization are
covered in this task: numeration and measurement
normalization. Numeration tests the understanding
of different representation systems for a number.
For example, a number in English can be written
as numerical digits (‘9’) or text (‘nine’). Measure-
ment normalization is about recognizing whether
different strings refer to same or different unit of



measurement (e.g., ‘m’ = ‘meter’, ‘m’ ̸= ‘mm’)
and converting a numerical value when changing
unit of measurement (e.g., 1 ‘m’ = 100 ‘cm’).

3.2 Data Construction
To construct a benchmark for basic numeracy
framework, we collect data from different sources.
We select existing NLI data with a quality assur-
ance process. We also transform the data from
other NLP tasks into NLI and auto-generate new in-
stances by leveraging template or formula change.

3.2.1 Existing NLI Data
We utilize AWP-NLI from EQUATE (Ravichan-
der et al., 2019) for arithmetic task. We manually
reviewed data and eliminated incorrect instances
(incomplete hypothesis sentence or wrong label).
We initially examined the numerical stress test set
from Naik et al. (2018) (also part of EQUATE) for
the comparison task. However, we decided to dis-
card this data in our benchmark for two reasons:
(i) Label have spurious patterns (Gururangan et al.,
2018), as neutral instances are constructed only
from entailment instances by swapping premise
and hypothesis sentences; (ii) Many premise sen-
tences contain multiple numbers. Since only one
number is modified with quantifier, the hypothesis
sentences may possess ambiguous interpretation in
most cases.

3.2.2 Data Creation for Arithmetic Task
Several works (Demszky et al., 2018; Yin et al.,
2021) harness other tasks to create NLI datasets.
In this work, we recast the instances of arithmetic
word problem (AWP) dataset that are originally
for question answering task into NLI task. The
AWP dataset consists of MultiArith, the Common-
core multi-step arithmetic problem (Roy and Roth,
2015), arithmetic subset of ASDiv (Miao et al.,
2020), and SVAMP (Patel et al., 2021).

For each instance of a word problem, we take
the context of the question as premise. We concate-
nate the question with the correct answer and then
transform it into a declarative sentence using Chat-
GPT 2. We inspect the generated sentence to ensure
the correctness. We use the declarative sentence as
hypothesis for an entailment instance. We perform
coreference resolution to resolve the pronoun in
the hypothesis to a named-entity or noun phrase
in the premise referred to. To generate contradic-
tion instance, we replace the correct number in the

2https://chatgpt.com/

hypothesis with a random guess number. Unlike
AWP-NLI (Ravichander et al., 2019), replacement
number is not constrained within specific interval,
but can be any positive number. As there is overlap
between the recast AWP data with existing NLI
data3, we deduplicate them in our final data.

The neutral case occurs when arithmetic com-
putation cannot be performed completely in order
to determine the correctness of the numerical con-
clusions on the hypothesis. We utilize the UMWP
subset (Sun et al., 2024) to create neutral NLI in-
stances. The recasting process is similar to entail-
ment, except for question and answer concatena-
tion. UMWP is derived from MultiArith, AsDiv,
and SVAMP. A UMWP instance corresponds to an
instance of those three AWP dataset. We concate-
nate the correct and incorrect answers from corre-
sponding original AWP with the UMWP question,
then transform them into hypothesis sentences.

3.2.3 Data Creation for Number Comparison
with Quantifier Task

We pick the sentences containing numerical infor-
mation as the premise. The sentences are sampled
from AWP dataset and Wiki-Convert (Thawani
et al., 2021a). The hypothesis is constructed by
modifying the numerical quantity from the premise
sentence. The modification is done by changing
the number and/or inserting the quantifier (“more
than” or “less than”) preceding the number. Those
strategies produce NLI instances with entailment
or contradiction label. To create neutral instance,
we flip the premise and hypothesis in entailment
pair.

To improve the data variation, we generate more
data by using the premise sentence from neutral.
The hypothesis is slightly modified premise by
changing the number and/or removing the quan-
tifiers. In addition, we prefix some quantifiers with
negation (“not”), either in the premise or hypoth-
esis sentence, or both. Refer to Appendix A for
details of the data variation.

3.2.4 Data Creation for Comparative
Reasoning Subtask

A number of AsDiv and SVAMP instances are com-
parison word problems. Original question typically
asks number difference between object being com-
pared (usually using subtraction operation). In this
task, instead of magnitude difference, we focus

3Several AWP-NLI instances were obtained from the same
source with MultiArith

https://chatgpt.com/


on correct relationship between compared objects.
To create contradiction instance, we modify the
hypothesis sentence by either switching syntactic
position of compared entities or changing word
comparator with its antonym. On the other hand,
applying both modification strategies generate an-
other entailment instance.

3.2.5 Data Creation for Number
Normalization Tasks

To create the data for Number Normalization task,
we sample the sentences from AWP dataset and Wi-
kiConvert. We make use of number-numeral dictio-
nary (Gorman and Sproat, 2016) and table of unit
conversion for numeration and measurement nor-
malization subtasks, respectively. For numeration
subtask, we cover numbers less than 100 and mul-
tiple of hundreds / thousands (200, ..., 3000, etc.)4.
We exclude sentences where numbers are bound
by quantifiers or used in estimation contexts, as
identifying semantic relations becomes non-trivial
when these numbers are replaced. Changing the
numbers in such cases may not always contradict
the original sentence.

The entailment instance consists of the sentence
containing number as premise and similar sentence
but substituting the number with its numeral syn-
onym as hypothesis. To construct contradiction in-
stances, we can apply different strategies. We pick
a random guess number different to the number
in the premise and use numeral representation for
hypothesis sentence. Otherwise, we insert / remove
part of the numeral text so it refers to a different
number to that in the premise (e.g., use twenty two
in the hypothesis and 22 in the premise).

For the measurement subtasks, we consider three
common families of units: length (e.g., meter, feet),
weight (e.g., kilogram), and area (e.g., square me-
ter). We utilize the sentence containing number
with measurement unit as premise and generate
hypothesis by: (i) changing the unit with its abbre-
viation or writing variation (e.g., square kilometer
→ km2), or (ii) converting number and unit.5 The
contradiction case is introduced by perturbing the
number and/or measurement unit. As normaliza-
tion is symmetric, we can expand the data with
preserving label (both entailment and contradic-
tion) by flipping the premise-hypothesis sentences.

4Numbers greater than 100, e.g., 234 and 9876 are rarely
verbalized as numeral in the sentence

5As our scope is basic numeracy, unit conversion is limited
among SI unit (e.g., km to m, vice versa, but not km to mile).

3.3 Constructing Data for Further Analysis

In addition to the data prepared following the steps
in section 3.2, we generate additional data to fur-
ther analyze the relationship between numeracy
and literacy. We expand NLI instances by varying
template formulas and numerical representations.

3.3.1 Template-Formula Data Augmentation
Numeracy in natural language text is not only ap-
plying number operations but also understanding
the context in which numbers are presented within
the text. Identical number tuples appearing in dif-
ferent context may leads to dissimilar numerical
interpretation and require different arithmetic oper-
ation to draw a conclusion.

To evaluate the language model’s ability to un-
derstand context and interpret numbers, we prepare
augmented data for the arithmetic task by combin-
ing templates and formulas. We randomly select
500 instances of the Basic Arithmetic task (100
for each arithmetic operation and another 100 neu-
tral instances). For the non-neutral instances, we
consider only those requiring a single operation
with exactly two numbers in the premise (n1, n2),
one number is in the hypothesis (n3), and equation
n1 op n2 = n3 applies, op ∈ {+,−,×,÷}. We
replace all numbers in both premise and hypothesis
with placeholders, which we then used as template.

On the other hand, we auto-generate 500 equa-
tions, i.e., 4 × 100 correct equations for each arith-
metic operation and another 100 false equations no
matter chosen operator (e.g., 12 op 3 = 5). We pair
each template with 10 different formula equations
while each formula with 10 different templates.
Hence, we collect 5000 instances in total. When
template obtained from instances with addition op-
eration is paired with addition formula, it produces
entailment data. While, this template is assigned to
formula with different operation (or false equation),
it produces contradiction data. Templates that are
originally from neutral instances always produce
neutral instances when paired with any formula.
Template and formula examples are presented in
Table 3, and an illustration of the template-formula
data augmentation methodology in Figure A1.

3.3.2 Numerical Representation Variation
To test the capability of the model perform Num-
ber Normalization in other tasks, we prepare data
for Basic Arithmetic and Number Comparison task
with different representation of number. We select
500, 500, and 250 instances with balanced label



E C N

Basic Arithmetic 2480 2418 971
Number Comparison

Number with Quantifier 2944 3724 2452
Reasoning 488 488 –

Number Normalization
Numeration 494 492 –
Measurement Unit 646 646 –

E C N

Template-formula based data generation
Basic Arithmetic 2092 1908 1000

Number representation variation
Basic Arithmetic 1200 1200 600
Number with Quantifier 558 564 378
Comparative Reasoning 378 372 –

Table 2: Basic numeracy data statistics.

(I1) P: A pet store had 13 siamese cats and 5 house cats. During a sale they sold 10 cats.
H: The pet store have 8 cats left.

E

(I2) P: A pet store had 43 siamese cats and 32 house cats. During a sale they sold 22 cats.
H: The pet store have 53 cats left.

E

(I3) P: While on vacation, Rachel took 13 pictures at the zoo and 5 at the museum. She later deleted 10 of the
pictures.
H: Rachel still has 8 pictures from her vacation.

E

(I4) P: The school cafeteria ordered 43 red apples and 32 green apples for students lunches. Only 22 students
wanted some fruits.
H: The cafeteria ended up with 53 extra fruits.

N

TEMPLATE

T1 P: A pet store had · · · siamese cats and · · · house cats. During a sale they sold · · · cats.
H: The pet store have · · · cats left.

FORMULA

F1 13 + 5 - 10 = 8
F1 43 + 32 - 22 = 53

Table 3: Template and formula in arithmetic task. Instances I1 and I2 use the same template (T1). Instances I3 and
I4 share the same formula (F1), while I2 and I4 have F2

distribution for arithmetic, number with quantifier,
and comparative reasoning, respectively. For Basic
Arithmetic tasks, we generate six different subsets.
Premise sentences can contain either number in
digit, numeral, or mixed (one number is in digit
and another one is numeral), while hypothesis sen-
tences contain either digit or numeral form. For
Number Comparison tasks, we create three subsets
based on whether the numbers being compared are
in the same or different formats (digit or numeral).

3.4 The Resulting Dataset

After filtering the EQUATE dataset and incorporat-
ing it with recast AWP and generated NLI data, we
end up with 18,243 premise-hypothesis pairs for
main dataset. We generate an additional 5,000 and
5,250 instances using template-formula augmen-
tation and various number representation, respec-
tively. Unless otherwise stated, the main dataset is
used for experiments. The statistics of the resulting
dataset for each taskare presented in Table 2.

4 Experiments and Results

4.1 Models
We conduct experiments on 49 language models
spanning 17 distinct model families. Our evalu-
ation includes pre-trained language models such
as RoBERTa (Liu et al., 2019), ALBERT (Lan
et al., 2020), ELECTRA (Clark et al., 2020),
BART (Lewis et al., 2020), XLNet (Yang et al.,
2019), and DeBERTa (He et al., 2023, 2021).
Those models have been fine-tuned on NLI datasets,
i.e., SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2018), FEVER-NLI (Nie et al., 2019), and
ANLI (Nie et al., 2020a).

Large language models (LLMs) such as Flan-
T5 (Chung et al., 2024), Mistral (Jiang et al., 2023),
Llama (Touvron et al., 2023; Dubey et al., 2024;
Meta Llama Team, 2024), Gemma (Gemma Team
et al., 2024a,b), Qwen (Yang et al., 2024a; Qwen
Team, 2024), InternLM (Cai et al., 2024), and
DeepSeek LLM (DeepSeek-AI et al., 2024) are
also included in our experiments. We evaluate both



base and instruction-tuned LLMs with varying size
ranging from 1.5B to 12B.

Additionally, we investigate math LLMs, specif-
ically designed for mathematical reasoning. These
models were either pre-trained with a special-
ized training objective or fine-tuned on math
datasets. Our experiments with math LLMs include
Llemma (Azerbayev et al., 2024), MetaMath (Yu
et al., 2023), WizardMath (Luo et al., 2025), Open-
Math (Toshniwal et al., 2024), QwenMath (Yang
et al., 2024b), InternLM-Math (Ying et al., 2024),
and DeepSeekMath (Shao et al., 2024).

We perform evaluation of general and math
LLMs in a zero-shot setting. We test three different
NLI prompts on sample data of Basic Arithmetic
task using Llama-2 model, and later run the best
prompt when evaluating whole data in our bench-
mark. The prompts are presented in Table A5.

4.2 Results
Overall Evaluation. Table 4 presents the F1
scores of the top-performing models from each
model family across the five basic numeracy sub-
tasks. For a more detailed results of precision
and recall scores, refer to Tables A10 and A11.
We observe that most large language models
(both general-purpose and math-LLMs) outperform
smaller pre-trained fine-tuned language models
only on Basic Arithmetic task. Flan-T5-XXL and
Qwen2.5-Math-7B-instruct are the two LLMs that
consistently match performance of NLI fine-tuned
models on the other four subtasks. However, even
these models fall short of DeBERTa-v3’s perfor-
mance on all four subtasks.

Our experiments do not reveal a clear superi-
ority of Math LLMs over other models in basic
numeracy tasks. MetaMath-Mistral-7B demon-
strated a marginal improvement over its correspond-
ing general-purpose model, Mistral-7B-instruct-
v0.3. In contrast, InternLM2-Math-plus-7B and
DeepSeek-Math-7B-rl performed less effectively
than their respective counterparts, InternLM2-7B
and DeepSeek-LLM-7B-chat.

Our findings indicate that models with larger
parameter sizes generally exhibit superior perfor-
mance. Instruction tuning has a significant impact
on enhancing the numerical abilities of LLMs, lead-
ing to a 10-20 point increase in accuracy compared
to their base versions. In certain model-task com-
binations, this improvement can even surpass 30
points (e.g., Gemma-2-9B-it achieved an F1 score
of 0.634 in Basic Arithmetic tasks, while its base

version is only 0.320). Moreover, the rapid ad-
vancement of newer LLMs has also contributed to
improvements in numerical capabilities. By com-
paring Llama, Gemma, and Qwen models from
different release versions, we saw that later ver-
sions consistently outperformed their predecessors
(e.g., Llama-3.1 vs. Llama-2). Complete evalua-
tion results for all models are shown in Table A7.

Basic Arithmetic Evaluation. Top-performing
LLMs successfully predict most entailment cases.
Stronger math-focused LLMs, such as InternLM2-
Math and DeepSeekMath, achieve a 0.9 recall for
the entailment class. However, these models strug-
gle to correctly classify non-entailment instances.

Humans generally find addition and subtraction
easier to learn than multiplication and division, and
face more challenges when solving arithmetic for-
mulas with multiple operations. Our investigation,
shown in Table A9, reveals the same patterns, for
smaller fine-tuned models, like DeBERTa-v3. For
math-LLMs, the pattern becomes less human-like,
as their ability to perform complex arithmetic op-
erations matches their proficiency with more basic
ones (addition, subtraction).

Number Comparison Evaluation. Most mod-
els achieve fair to good precision for the entail-
ment class on the number with quantifier sub-
task. However, they suffer from low recall for
the neutral class, with scores less than 0.3 for
most fine-tuned and instruction-tuned models, and
even worse for Math-LLMs. Notably, OpenMath-
Mistral and InternLM2-Math-plus fail to retrieve
any neutral instances at all.

Number Normalization Evaluation. The results
in Table 4 demonstrate that recent language mod-
els can perform Number Normalization very well.
Pre-trained fine-tuned smaller LMs and instruction-
tuned general-purpose LLMs, beside Mistral-7B-
instruct-v0.3, achieve F1-score of 0.9 and 0.8 for
numeration and measurement unit normalization
subtasks, respectively. Surprisingly, half of math-
LLMs score lower performance, behind LMs that
are not specifically trained or tuned on mathematics
reasoning purpose.

Furthermore, we are interested in exploring
whether language models’ capabilities in Number
Normalization extend to other numeracy tasks. We
compare model performance across various num-
ber representations in arithmetic and comparison
tasks. Complete results are presented in Figure A3.



Arithmetic Comparison Normalization
Quantifier Reasoning Numeration Unit

Fine-tuned PLMs
RoBERTa + NLI 0.372 / 0.362 0.580 / 0.489 0.684 / 0.697 0.939 / 0.941 0.821 / 0.821
ALBERT + NLI 0.384 / 0.381 0.672 / 0.629 0.679 / 0.669 0.963 / 0.965 0.906 / 0.905
ELECTRA + NLI 0.375 / 0.360 0.575 / 0.475 0.578 / 0.611 0.917 / 0.919 0.808 / 0.808
BART + NLI 0.340 / 0.333 0.596 / 0.532 0.570 / 0.588 0.931 / 0.935 0.887 / 0.887
XLNet + NLI 0.371 / 0.350 0.585 / 0.501 0.634 / 0.640 0.915 / 0.918 0.827 / 0.826
DeBERTa-v3 + NLI 0.451 / 0.434 0.689 / 0.654 0.795 / 0.798 0.973 / 0.978 0.889 / 0.892

General LLMs
Flan-T5-XXL (11B) 0.440 / 0.433 0.667 / 0.615 0.801 / 0.808 0.933 / 0.936 0.848 / 0.845
Mistral-7B-instruct-v0.3 0.408 / 0.403 0.457 / 0.441 0.501 / 0.535 0.736 / 0.818 0.665 / 0.687
Llama-3.1-8B-instruct 0.577 / 0.434 0.536 / 0.397 0.701 / 0.690 0.927 / 0.927 0.781 / 0.771
Gemma-2-9B-it 0.651 / 0.634 0.632 / 0.561 0.703 / 0.748 0.885 / 0.938 0.778 / 0.811
InternLM2-7B 0.494 / 0.423 0.542 / 0.424 0.655 / 0.652 0.945 / 0.949 0.876 / 0.875
DeepSeek-LLM-7B-chat 0.481 / 0.402 0.472 / 0.340 0.561 / 0.562 0.962 / 0.963 0.783 / 0.775
Qwen2.5-7B-instruct 0.555 / 0.509 0.576 / 0.480 0.722 / 0.729 0.930 / 0.952 0.831 / 0.851

Math LLMs
Llemma-7B 0.420 / 0.270 0.404 / 0.333 0.487 / 0.391 0.495 / 0.443 0.513 / 0.544
MetaMath-Mistral-7B 0.465 / 0.354 0.431 / 0.365 0.526 / 0.474 0.757 / 0.775 0.632 / 0.617
WizardMath-7B-v1.1 0.488 / 0.384 0.423 / 0.384 0.529 / 0.472 0.645 / 0.700 0.601 / 0.578
OpenMath-Mistral-7B 0.515 / 0.374 0.496 / 0.369 0.593 / 0.579 0.948 / 0.948 0.676 / 0.658
InternLM2-Math-plus-7B 0.498 / 0.335 0.495 / 0.366 0.502 / 0.371 0.754 / 0.737 0.689 / 0.657
DeepSeek-Math-7B-rl 0.567 / 0.442 0.381 / 0.284 0.535 / 0.451 0.922 / 0.923 0.797 / 0.791
Qwen2.5-Math-7B-instruct 0.619 / 0.451 0.631 / 0.481 0.729 / 0.727 0.965 / 0.965 0.851 / 0.850

Table 4: Language models evaluation on Basic Arithmetic, Number Comparison, and Number Normalization tasks.
Evaluation results are presented as “accuracy / macro F1” scores. Full evaluation results for LLMs in varied size
and released version are presented in Tables A7 and A8 in Appendix C.

While performance varies when switching from
digits to words, there is no significant difference in
scores. This suggests that language models are not
only able to recognize numbers in different formats
(i.e., as an isolated NLI task) but also apply this
ability effectively in tasks requiring numeracy.

4.3 Analysis
Numeracy in word problems requires understand-
ing not only numbers but also the language context.
Solving these problems involves interpreting the
numbers according to the textual context, identify-
ing relevant information, and discerning the oper-
ations needed to find a solution. We analyze the
interplay of numeracy (number understanding) and
language comprehension. We discuss robustness
and magnitude effect of LMs numeracy capability.

How robustly do LMs perform basic numeracy
using different number and language context?
Our benchmark evaluates model robustness by con-
sidering both accuracy and invariance with respect
to templates or formulas. Template accuracy is cal-
culated as the mean accuracy across all instances
derived from that template. Template invariance

measures the consistency of a model’s predictions
for instances generated from the same template.
Formally, let an instance of an arithmetic task be
Ii =< xi, yi, Ta,Fb >, where xi is the premise-
hypothesis text whose gold label is yi. This in-
stance utilizes template Ta and embeds formula Fb.
The accuracy and invariance for template Tj are
computed using the following formula.

Acc(Tj ,M) =
1

N

∑
k

fM(xk) = yk ,

Inv(Tj ,M) =
1

N
max

c

∑
k

fM(xk) = Cc ,

Ik =< _, _, Tj , _ >

where fM(xi) denotes the label predicted by a
model M for xi, C = {entailment, contradiction,
neutral}, and N = 10 in our experiment.

Figure 1 illustrates the LMs’ evaluation on arith-
metic dataset clustered by the template or formula
used. The LM accuracy for the formula group is
comparable to that for the template group, though
the latter shows more variability. This suggests that
certain linguistic structures in which numbers are



Figure 1: Basic arithmetic robustness using different template and formula for DeBERTa-v3, LLama3.1-8B-instruct,
and Qwen2.5-Math-7B-instruct. Robustness evaluation for other models is reported in Figure A2.

embedded are more difficult or easier for LMs to
learn. On the other hand, we find that most mod-
els exhibit low invariance when learning formulas.
They generally do not output the same prediction
when assigning the same number combinations to
different templates, indicating that the models at-
tempt to learn from the context. Our investigation
reveals that templates with an invariance score near
1 are mostly for neutral instances. However, in
most cases, predictions with an invariance score of
1 have an accuracy score of 0, indicating that the
model repeatedly outputs the wrong label.

How reliably do LMs select relevant information
to perform basic numeracy? Model robustness
can also be evaluated by the extent to which they
filter and use correct information from the context
to perform numeracy. LLMs perform poorly on
the neutral class, indicating that models struggle
to identify whether computation cannot be verified
given insufficient information context in the text.
This finding aligns with Sun et al. (2024), where
the models hallucinate with unanswerable math
problems. For the entailment case, models become
more confused when the premise sentences contain
confounding numbers, i.e., not all numbers in the
text are relevant for arithmetic calculation (see the
example in Table A6).

Does number magnitude affect numeracy of
LMs? Figure 2 shows model performance based
on number magnitude. All models show a consis-
tent decrease in F1-score as the numbers used in
the formulas increase, with the only outlier being
DeBERTa-v3 when working with large numbers.
This suggests models perform calculations with
greater accuracy on smaller numbers (i.e., numbers
less than 100) compared to numbers in the thou-
sands and tens of thousands. This finding aligns
with previous work by Shah et al. (2023), which
demonstrated a correlation between model numer-
acy and number magnitude in number comparison

Figure 2: Number magnitude effect on numeracy.

tasks. These results indicate that LLMs may mimic
aspects of human cognitive processing. Behavioral
studies of arithmetic have shown that increasing the
size of the numbers makes problem-solving more
difficult for humans (Hamann and Ashcraft, 1985;
Kong et al., 1999; Zbrodoff and Logan, 2005).

5 Conclusion

We have introduced a new benchmark dataset for
evaluating basic numeracy, including Basic Arith-
metic, Number Comparison, and Normalization,
in NLI tasks. This provides a resource support-
ing evaluating progress on numeracy skills of NLP
systems. Our experiments reveal most large lan-
guage models struggle to correctly classify non-
entailment cases. Our analysis indicates that the
numeracy capabilities of models align with hu-
man behavior concerning arithmetic complexity
and number magnitude. Model robustness is also
an issue, particularly in relation to understanding
numbers correctly in linguistic contexts.



Ethical Considerations

The data utilized in this study does not contain
any personally identifiable information or offen-
sive content. All data is in English and originates
from multiple sources, each distributed under dif-
ferent licenses. Multi-Arith (Roy and Roth, 2015),
ASDiv (Miao et al., 2020), and SVAMP (Patel et al.,
2021) are sourced from crawled web pages, while
Wiki-Convert (Thawani et al., 2021a) is derived
from Wikipedia. ASDiv is released under the CC
BY-NC 4.0 license, while EQUATE (Ravichander
et al., 2019) and SVAMP are distributed under the
MIT license. UMWP (Sun et al., 2024) is licensed
under the CC BY-SA 4.0 protocol. The data is
intended solely for academic research and non-
commercial purposes.

Limitations

Our work examines a limited scope of numeracy,
focusing specifically on three key types: Basic
Arithmetic, Number Comparison, and Number Nor-
malization. However, numeracy encompasses a
broader range of skills that we leave for future
exploration, such as counting, estimation, and un-
derstanding numerical concepts across domains.
These more complex aspects of numeracy present
unique challenges in real-world contexts, and their
evaluation remains an open area of research. Fur-
thermore, while numerical information can be rep-
resented in various ways within text (Mahendra
et al., 2024), this study primarily uses cardinal and
measurement numbers. Fractions, decimals, and
percentages are underrepresented in our corpus.
We leave exploring these areas to future research.

On the other hand, certain NLI instances inher-
ently present ambiguities. Human judgments can
vary when evaluating the same reasoning task (Nie
et al., 2020b; Weber-Genzel et al., 2024). For exam-
ple, some individuals may interpret the statement
“Charles traveled for 2 hours” as contradictory to
“Charles traveled for three hours” citing the discrep-
ancy in numerical information, specifically travel
time. However, others may perceive a monotonic
reasoning (Yanaka et al., 2019), i.e., partial rela-
tionship between the two statements reasoning that
“if Charles traveled for 3 hours, it implies he also
traveled for 2”. In this study, we adopt the former
interpretation when constructing data for Number
Normalization. A more comprehensive exploration
of these nuances will be the subject of future re-
search.

The current work evaluates only the zero-shot
capabilities of language models, without exploring
more sophisticated approaches such as few-shot
learning (Brown et al., 2020) or chain-of-thought
prompting (Kojima et al., 2022; Wei et al., 2022),
which are left for future investigation. Furthermore,
this work does not prioritize prompt engineering.
Our primary objective was not to optimize task
performance through prompt design but to focus
on numeracy-related reasoning evaluation. We em-
ployed prompts from existing literature without
fine-tuning them specifically for our experiments.

Finally, our study is limited to the English lan-
guage. Although numeracy is a universally ap-
plicable skill, resources for building multilingual
benchmarks remain sparse. There are only a few
datasets available for math word problems or nu-
merical reasoning corpora in languages other than
English, constraining our capacity to extend this
work to a broader language set.
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Number Representation Variation. Table A3
presents examples of data for Basic Arithmetic and
Number Comparison tasks using different number
representations.

B Appendix: Models

Table A4 lists all models evaluated in our experi-
ment. We utilize model implementation from Hug-
gingface (Wolf et al., 2020). Table A5 presents
prompt for evaluating LLMs in zero-shot setting.

C Appendix: Experimental Results
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Premise Hypothesis Possible
Labels

ni nj E, C
Rasik walked 20 m towards north. Rasik walked 40 m towards north.

ni quant+ nj E, C
Rasik walked 20 m towards north. Rasik walked less than 80 m towards north.

ni neg + quant+ nj E, C
Rasik walked 40 m towards north. Rasik walked not more than 80 m towards north.

quant+ ni nj C, N
Rasik walked more than 40 m towards north. Rasik walked 40 m towards north.

quant+ ni quant+ nj E, N
Rasik walked less than 80 m towards north. Rasik walked less than 20 m towards north.

neg + quant+ ni nj C, N
Rasik walked not more than 20 m towards north. Rasik walked 40 m towards north.

neg + quant+ ni neg + quant+ nj E, N
Rasik walked not less than 40 m towards north. Rasik walked not less than 20 m towards north.

Table A1: Dataset variation in Number Comparison with quantifier task. ni and nj can be same or different number.
quant = quantifier (“more” or “less”), neg = negation (“not”).

Original QA There are 6 birds and 3 nests. How many are birds more than nests?

NLI P: There are 6 birds and 3 nests
H: There are more birds than nests E

entity swapping H: There are more nests than birds. C
comparator replacement H: There are few birds than nests. C
double change H: There are few nests than birds. E

Table A2: Examples of data for Comparative Reasoning task, recasted from question answering dataset.

Variant Premise Hypothesis

BASIC ARITHMETIC

P num H num Sam had 9 dimes in his bank and his dad gave him 7 dimes. Sam has 16 dimes now.
P num H word Sam had 9 dimes in his bank and his dad gave him 7 dimes. Sam has sixteen dimes now.
P word H num Sam had nine dimes in his bank and his dad gave him seven dimes. Sam has 16 dimes now.
P word H word Sam had nine dimes in his bank and his dad gave him seven dimes. Sam has sixteen dimes now.
P mixed H num Sam had 9 dimes in his bank and his dad gave him seven dimes. Sam has 16 dimes now.
P mixed H word Sam had 9 dimes in his bank and his dad gave him seven dimes. Sam has sixteen dimes now.

NUMBER COMPARISON

num Adam has 10 apples. Jackie has 2 apples. Adam has fewer apples than Jackie.
word Adam has ten apples. Jackie has two apples. Adam has fewer apples than Jackie.
mixed Adam has 10 apples. Jackie has two apples. Adam has fewer apples than Jackie.

Table A3: Examples of data for Basic Arithmetic and Number Comparison task using different number representation.
num: numbers are represented as digit, word: numbers are represented as numeral word, mixed: some numbers are
represented as digit, some others as numeral.



Figure A1: Template-formula data augmentation. We generate NLI data by pairing templates and formulas,
following the methodology described in section 3.3.1



Models Family HF Source

RoBERTa ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
ALBERT ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli
ELECTRA ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli
BART ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli
XLNet ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli
DeBERTa-v3 MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli

Flan-T5 google/flan-t5-xl
google/flan-t5-xxl

Mistral mistralai/Mistral-7B-v0.1
mistralai/Mistral-7B-Instruct-v0.3

Llama meta-llama/Llama–2-7b
meta-llama/Llama–2-7b-chat
meta-llama/Meta-Llama–3-8B

meta-llama/Meta-Llama–3-8B-Instruct
meta-llama/Llama–3.1-8B

meta-llama/Llama–3.1-8B-Instruct

Gemma google/gemma-2b
google/gemma-2b-it

google/gemma-7b
google/gemma-1.1-7b-it

google/gemma-2-2b
google/gemma-2-2b-it

google/gemma-2-9b
google/gemma-2-9b-it

InternLM internlm/internlm2-7b
internlm/internlm2-math-plus-7b

DeepSeek deepseek-ai/deepseek-llm-7b-base
deepseek-ai/deepseek-llm-7b-chat
deepseek-ai/deepseek-math-7b-base

deepseek-ai/deepseek-math-7b-instruct
deepseek-ai/deepseek-math-7b-rl

Qwen Qwen/Qwen2-1.5B
Qwen/Qwen2-1.5B-Instruct

Qwen/Qwen2-7B
Qwen/Qwen2-7B-Instruct

Qwen/Qwen2-Math-7B
Qwen/Qwen2-Math-7B-Instruct

Qwen/Qwen2.5-3B
Qwen/Qwen2.5-3B-Instruct

Qwen/Qwen2.5-7B
Qwen/Qwen2.5-7B-Instruct

Qwen/Qwen2.5-Math-7B
Qwen/Qwen2.5-Math-7B-Instruct

Llemma EleutherAI/llemma_7b

MetaMath meta-math/MetaMath-7B-V1.0
meta-math/MetaMath-Llemma-7B
meta-math/MetaMath-Mistral-7B

WizardMath WizardLMTeam/WizardMath-7B-V1.1

OpenMath OpenMath-Mistral-7B-v0.1-hf

Table A4: Models evaluated using the basic numeracy NLI benchmark.

ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli
ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli
ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli
ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli
MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
EleutherAI/llemma_7b


Selected prompt [PREMISE]
Based on previous passage, is it true that [HYPOTHESIS]?
True, False, or Maybe?
Answer: [“True”, “False”, “Maybe”]

Other prompt candidate (1) [PREMISE]
Question: Does this imply that [HYPOTHESIS]? True,
False, or Neither?
Answer: [“True”, “False”, “Neither”]

Other prompt candidate (2) Premise: [PREMISE]
Hypothesis: [HYPOTHESIS]
NLI label: [“Entailment”, “Contradiction”, “Neutral”]

Table A5: Prompt used for LLMs, adapted from previous work by Brown et al. (2020), Webson and Pavlick (2022),
and Cahyawijaya et al. (2023).

Problem without distraction P: Jason picked 46 pears, Keith picked 47 pears, and Mike picked 12
pears from the pear tree.
H: 105 pears were picked in total

Problem with distraction,
(confounding number)

P: Sally has 9 orange balloons and 4 blue balloons. she found 2 more
of the orange balloons.
H: Sally has 11 orange balloons now.

Table A6: Data for Arithmetic task, highlighting the problem with distraction.

Figure A2: Basic Arithmetic robustness using different template and formula for ALBERT, FlanT5-XXL, Gemma-
2-9B-it, OpenMath-Mistral-7B, and DeepSeek-Math-7B-rl.



Arithmetic Comparison Normalization
Quantifier Reasoning Numeration Unit

Flan-T5
XL (3B) 0.428 / 0.416 0.620 / 0.525 0.787 / 0.788 0.934 / 0.936 0.862 / 0.860
XXL (11B) 0.440 / 0.433 0.667 / 0.615 0.801 / 0.808 0.933 / 0.936 0.848 / 0.845

Mistral 7B
base 0.345 / 0.336 0.369 / 0.348 0.412 / 0.413 0.335 / 0.443 0.461 / 0.477
instruct 0.408 / 0.403 0.457 / 0.441 0.501 / 0.535 0.736 / 0.818 0.665 / 0.687

Llama-2 7B
base 0.419 / 0.235 0.438 / 0.335 0.490 / 0.427 0.611 / 0.575 0.575 / 0.569
chat 0.420 / 0.235 0.422 / 0.225 0.513 / 0.493 0.520 / 0.383 0.557 / 0.476

Meta-Llama-3 8B
base 0.428 / 0.312 0.473 / 0.371 0.473 / 0.371 0.460 / 0.423 0.495 / 0.418
instruct 0.539 / 0.503 0.521 / 0.495 0.588 / 0.606 0.895 / 0.932 0.768 / 0.786

Llama-3.1 8B
base 0.428 / 0.345 0.361 / 0.320 0.428 / 0.431 0.500 / 0.499 0.505 / 0.454
instruct 0.577 / 0.434 0.536 / 0.397 0.701 / 0.690 0.927 / 0.927 0.781 / 0.771

Gemma 2B
base 0.377 / 0.295 0.344 / 0.293 0.496 / 0.362 0.440 / 0.397 0.503 / 0.484
instruct 0.453 / 0.266 0.429 /0.298 0.497 / 0.423 0.563 / 0.458 0.656 / 0.611

Gemma–1.1 7B
base 0.429 / 0.262 0.377 / 0.295 0.557 / 0.364 0.580 / 0.508 0.589 / 0.541
instruct 0.580 / 0.504 0.613 / 0.540 0.668 / 0.650 0.969 / 0.973 0.834 / 0.833

Gemma–2 2B
base 0.373 / 0.329 0.354 / 0.328 0.387 / 0.428 0.427 / 0.459 0.474 / 0.498
instruct 0.211 / 0.186 0.453 / 0.416 0.186 / 0.281 0.647 / 0.775 0.683 / 0.742

Gemma–2 9B
base 0.338 / 0.319 0.361 / 0.350 0.330 / 0.395 0.471 / 0.540 0.448 / 0.497
instruct 0.651 / 0.634 0.632 / 0.561 0.703 / 0.748 0.885 / 0.938 0.778 / 0.811

Qwen2 1.5B
base 0.367 / 0.348 0.415 / 0.423 0.366 / 0.418 0.444 / 0.502 0.567 / 0.580
instruct 0.303 / 0.303 0.337 / 0.421 0.241 / 0.335 0.372 / 0.493 0.468 / 0.587

Qwen2 7B
base 0.427 / 0.414 0.465 / 0.449 0.404 / 0.510 0.559 / 0.672 0.683 / 0.712
instruct 0.505 / 0.490 0.578 / 0.511 0.694 / 0.721 0.836 / 0.898 0.814 / 0.821

Qwen2–Math 7B
base 0.481 / 0.414 0.419 / 0.351 0.504 / 0.511 0.568 / 0.553 0.595 / 0.573
instruct 0.563 / 0.443 0.581 / 0.448 0.656 / 0.647 0.991 / 0.992 0.837 / 0.834

Qwen2.5 3B
base 0.362 / 0.338 0.373 / 0.364 0.341 / 0.382 0.487 / 0.549 0.545 / 0.538
instruct 0.406 / 0.400 0.469 / 0.434 0.402 / 0.478 0.648 / 0.751 0.574 / 0.638

Qwen2.5 7B
base 0.574 / 0.519 0.574 / 0.482 0.686 / 0.700 0.936 / 0.957 0.820 / 0.830
instruct 0.555 / 0.509 0.576 / 0.480 0.722 / 0.729 0.930 / 0.952 0.831 / 0.851

Qwen2.5-Math 7B
base 0.509 / 0.452 0.460 / 0.396 0.605 / 0.614 0.651 / 0.682 0.606 / 0.631
instruct 0.619 / 0.451 0.631 / 0.481 0.728 / 0.727 0.965 / 0.965 0.851 / 0.850

Table A7: LLMs evaluation (including models from Flan-T5, Llama, Gemma, and Qwen) on Basic Arithmetic,
Number Comparison, and Number Normalization tasks. Evaluation results are presented as “Accuracy / macro F1”
scores.



Arithmetic Comparison Normalization
Quantifier Reasoning Numeration Unit

InternLM2 7B
instruct 0.494 / 0.423 0.542 / 0.424 0.655 / 0.652 0.945 / 0.949 0.876 / 0.875

InternLM2-Math-Plus 7B
instruct 0.498 / 0.335 0.495 / 0.366 0.502 / 0.371 0.754 / 0.737 0.689 / 0.657

DeepSeek-LLM 7B
base 0.421 / 0.285 0.410 / 0.303 0.508 / 0.451 0.680 / 0.671 0.578 / 0.561
chat 0.481 / 0.402 0.472 / 0.340 0.560 / 0.562 0.961 / 0.963 0.783 / 0.775

DeepSeek-Math 7B
base 0.439 / 0.332 0.423 / 0.313 0.420 / 0.420 0.532 / 0.521 0.567 / 0.546
instruct 0.528 / 0.378 0.497 / 0.396 0.522 / 0.457 0.776 / 0.767 0.718 / 0.709
rl 0.567 / 0.442 0.381 / 0.284 0.535 / 0.451 0.922 / 0.923 0.797 / 0.791

Llemma 7B
0.420 / 0.270 0.404 / 0.333 0.487 / 0.391 0.495 / 0.443 0.513 / 0.544

MetaMath 7B
Metamath(-Llama-2) 0.454 / 0.330 0.402 / 0.304 0.498 / 0.496 0.705 / 0.701 0.541 / 0.470
MetaMath-Llemma 0.443 / 0.261 0.397 / 0.267 0.501 / 0.367 0.585 / 0.499 0.575 / 0.488
MetaMath-Mistral 0.465 / 0.354 0.431 / 0.365 0.526 / 0.474 0.757 / 0.775 0.632 / 0.617

WizardMath 7B
0.488 / 0.384 0.423 / 0.384 0.529 / 0.472 0.645 / 0.700 0.601 / 0.578

OpenMath 7B
OpenMath-Mistral 0.515 / 0.374 0.496 / 0.369 0.593 / 0.579 0.948 / 0.948 0.676 / 0.658

Table A8: LLMs evaluation (including models from InternLM, DeepSeek, and MetaMath) on Basic Arithmetic,
Number Comparison, and Number Normalization tasks. Evaluation results are presented as “Accuracy / macro F1”
scores.

#instances Accuracy / F1

DeBERTa-v3 Llama-3.1 Gemma-2 DeepSeek-Math Qwen2.5-Math
+ NLI -8B-Instruct -9B-it -7B-rl -7B-instruct

addition 1,068 0.690 / 0.700 0.647 / 0.639 0.643 / 0.706 0.492 / 0.507 0.774 / 0.752
subtraction 1,299 0.628 / 0.645 0.679 / 0.669 0.628 / 0.687 0.575 / 0.578 0.808 / 0.778
multiplication 664 0.476 / 0.556 0.480 / 0.480 0.623 / 0.653 0.523 / 0.526 0.837 / 0.813
division 761 0.311 / 0.363 0.574 / 0.573 0.586 / 0.643 0.580 / 0.583 0.829 / 0.804

single operations 3,792 0.555 / 0.603 0.614 / 0.609 0.623 / 0.677 0.543 / 0.551 0.808 / 0.782
multi operations 2,632 0.433 / 0.478 0.604 / 0.593 0.580 / 0.642 0.535 / 0.545 0.706 / 0.665

Table A9: Models performance on Basic Arithmetic tasks. Breakdown by arithmetic operations and operands.



Entailment Contradiction Neutral
P R F1 P R F1 P R F1

ALBERT + NLI 0.574 0.320 0.411 0.583 0.403 0.476 0.172 0.499 0.256
DeBERTa-v3 + NLI 0.646 0.397 0.492 0.611 0.517 0.560 0.178 0.422 0.251

Flan-T5-XXL 0.615 0.479 0.538 0.761 0.318 0.448 0.208 0.627 0.312
Llama–3.1–8B–Instruct 0.548 0.893 0.679 0.630 0.465 0.535 1.000 0.046 0.089
Gemma–2–9B–it 0.682 0.777 0.727 0.764 0.479 0.589 0.479 0.753 0.586
InternLM2–7B 0.565 0.413 0.477 0.470 0.712 0.566 0.388 0.158 0.224
DeepSeek–LLM–7B–chat 0.516 0.554 0.534 0.493 0.556 0.523 0.225 0.111 0.149
Qwen2.5–7B–Instruct 0.805 0.415 0.547 0.549 0.770 0.641 0.304 0.377 0.337

OpenMath–Mistral–7B 0.464 0.761 0.576 0.480 0.325 0.388 0.337 0.057 0.097
InternLM2–Math-plus–7B 0.474 0.901 0.621 0.594 0.284 0.384 0.000 0.000 0.000
DeepSeek–Math–7B–rl 0.551 0.913 0.687 0.648 0.403 0.497 0.343 0.090 0.142
Qwen2.5–Math–7B–instruct 0.665 0.775 0.716 0.575 0.708 0.635 1.000 0.001 0.002

Table A10: Precision, Recall, and F1-score Basic Arithmetic tasks across NLI classes.

Entailment Contradiction Neutral
P R F1 P R F1 P R F1

ALBERT + NLI q 0.801 0.650 0.717 0.589 0.934 0.723 0.889 0.299 0.447
c 0.634 0.887 0.740 0.816 0.471 0.597

DeBERTa-v3 + NLI q 0.903 0.659 0.762 0.606 0.938 0.737 0.702 0.347 0.465
c 0.807 0.781 0.794 0.793 0.809 0.801

Flan-T5-XXL q 0.832 0.650 0.730 0.603 0.945 0.737 0.660 0.264 0.377
c 0.778 0.875 0.824 0.872 0.727 0.793

Llama–3.1–8B–Instruct q 0.627 0.539 0.580 0.501 0.786 0.612 0.000 0.000 0.000
c 0.646 0.887 0.748 0.820 0.514 0.632

Gemma–2–9B–it q 0.867 0.566 0.685 0.582 0.627 0.604 0.519 0.318 0.394
c 0.779 0.773 0.776 0.833 0.633 0.719

InternLM2–7B q 0.752 0.454 0.566 0.487 0.861 0.622 0.679 0.045 0.084
c 0.707 0.543 0.614 0.628 0.766 0.690

DeepSeek–LLM–7B–chat q 0.525 0.367 0.432 0.457 0.801 0.582 0.350 0.003 0.006
c 0.561 0.576 0.568 0.567 0.545 0.556

Qwen2.5–7B–Instruct q 0.931 0.438 0.596 0.509 0.850 0.636 0.554 0.128 0.207
c 0.835 0.580 0.684 0.699 0.865 0.773

OpenMath–Mistral–7B q 0.720 0.496 0.588 0.560 0.768 0.648 0.000 0.000 0.000
c 0.568 0.777 0.656 0.647 0.410 0.502

InternLM2–Math–plus–7B q 0.655 0.722 0.687 0.619 0.542 0.578 0.000 0.000 0.000
c 0.501 0.959 0.658 0.524 0.045 0.083

DeepSeek–Math–7B–instruct q 0.727 0.584 0.647 0.595 0.704 0.645 0.617 0.033 0.063
c 0.513 0.867 0.645 0.573 0.176 0.270

Qwen2.5–Math–7B–instruct q 0.805 0.738 0.770 0.557 0.845 0.672 1.000 0.000 0.001
c 0.764 0.662 0.709 0.702 0.795 0.745

Table A11: Precision, Recall, and F1-score on Number Comparison tasks (q: comparing numbers with quantifier, c:
comparative reasoning) across NLI classes.



Figure A3: LMs Accuracy on Basic Arithmetic and Number Comparison Tasks Across Number Representation
Variation. num: numbers are represented as digit, word: numbers are represented as numeral word, mixed: some
numbers are represented as digit, some others as numeral.


	Introduction
	Related Work
	Basic Numeracy Framework
	Tasks
	Data Construction
	Existing NLI Data
	Data Creation for Arithmetic Task
	Data Creation for Number Comparison with Quantifier Task
	Data Creation for Comparative Reasoning Subtask
	Data Creation for Number Normalization Tasks

	Constructing Data for Further Analysis
	Template-Formula Data Augmentation
	Numerical Representation Variation

	The Resulting Dataset

	Experiments and Results
	Models
	Results
	Analysis

	Conclusion
	Appendix: Data
	Appendix: Models
	Appendix: Experimental Results

